

Welcome to Town Crier’s documentation!

Contents:

	How Town Crier Works
	The Big Picture

	A Little Bit More Details

	Security of TC

	Get Started: Write Your First TC-powered Contract
	Submit queries via request

	Canceling requests via cancel

	Receiving responses from TC

	Play with TC on Rinkeby
	Preliminaries

	Outline of Application.sol

	Send queries to Application.sol

	How to use various docker images
	Setup

	Launch TC

	Technical details of the TownCrier.sol

Indices and tables

	Index

	Module Index

	Search Page

How Town Crier Works

The Big Picture

Town Crier (TC) connects the authenticated data from HTTPS websites to smart contracts.
TC works in a request-response fashion—the client (your fantastic smart contract that needs data)
submit queries to TC, from which responses are furnished.

[image: data flow]

TC serves as a bridge between authenticated data on the web and the blockchain.

A Little Bit More Details

Behind the scenes, TC has two components that work together to serve queries from client contracts:

	TC Contract

	The frontend. A smart contract deployed on the blockchain that is responsible to interface with client contracts.

	TC Server

	The backend. A SGX-protected process that actually handles the queries picked up by the fronend. When the TC contract receives a query from a client contract, the TC server fetches the requested data from the website and relays it back to the requesting contract.

[image: data flow]

TC Contract and TC Server.

Security of TC

Query processing happens inside an SGX-protected environment known as an enclave.
The requested data is fetched via a TLS connection to the target website that terminates inside the enclave.
SGX protections prevent even the operating system of the server from peeking into the enclave or modifying its behavior, while use of TLS prevents tampering or eavesdropping on communications on the network.

Town Crier can optionally ingest an encrypted query, allowing it to handle secret query data. For example, a query could include a password used to log into a server or secret trading data. TC’s operation in an SGX enclave ensures that the password or trading data is concealed from the TC operator (and everyone else).

Get Started: Write Your First TC-powered Contract

The TC contract has a very simple API for your contract to call.
Below we present the generic API,
and then we’ll go through an example (Play with TC on Rinkeby) with detailed explanation.

Submit queries via request

An application contract sends queries to TC by calling the request function.

request(uint8 requestType, address callbackAddr,
 bytes4 callbackFID, uint256 timestamp,
 bytes32[] requestData) public payable returns(int256);

	Parameters:

	
	requestType: indicates the query type (see below).

	callbackAddr: the address of the recipient contract (see below).

	callbackFID: the callback function selector (see below).

	timestamp: reserved. Unused for now.

	requestData: data specifying query parameters. The format depends on the query type.

Warning

Calling contracts must prepay the gas cost incurred by the Town Crier server in delivering a response to the application contract properly. The calling contract is responsible to set msg.value properly.

Return: The function returns an int256 value denoted as requestId.

	If requestId > 0, then the request is successfully submitted. The calling contract can use requestId to check the response or status.

	If requestId = -2^250, then the request fails because the requester didn’t send enough fee to the TC Contract.

	If requestId = 0, then the TC service is suspended due to some internal reason. No more requests or cancellations can be made but previous requests will still be responded to by TC.

	If requestId < 0 && requestId != -2^250, then the TC Contract is upgraded and requests should be sent to the new address -requestId (negative of requestId).

Canceling requests via cancel

cancel(uint64 requestId) public returns(bool);

Unprocessed requests can be canceled by calling function cancel(requestId).
The fee paid by the requester is refunded (minus processing costs, denoted as cancellation fee).

For more details about how Town Crier contract works, you can look at the source code of the contract TownCrier.sol [https://github.com/bl4ck5un/Town-Crier/blob/master/contracts/TownCrier.sol].

Receiving responses from TC

To receive a response from TC, the requester need to specify the recipient contract as well as the recipient function.

Warning

Very importantly, TC requires that the recipient function to have the following signature.

function FUNCTION_NAME(uint64 requestId, uint64 error, bytes32 respData) public;

This is the function that will be called by the TC Contract to deliver the response from TC server.

To do so, you should set the callbackFID parameter to bytes4(sha3("FUNCTION_NAME(uint64,uint64,bytes32)")), namely the selector [https://solidity.readthedocs.io/en/latest/abi-spec.html#function-selector] of your FUNCTION_NAME function.

	Parameters: error and respData.

	
	If error = 0, the request has been successfully processed and the calling contract can then safely use respData. The fee paid is consumed by TC.

	If error = 1, the provided request is invalid or cannot be found on the website. In this case, similarly, the fee is consumed by TC.

	If error > 1, then an error has occured in the Town Crier server. In this case, the fee is fully refunded but the transaction fee (for making this call).

Play with TC on Rinkeby

Note

A version of Town Crier smart contract has been deployed on the Rinkeby testnet [https://rinkeby.etherscan.io/address/0xc41c9c6be928f3abde1c3b327a70c5a5abb35c5f].
To show how to use Town Crier, we present a skeleton Application Contract that does nothing other than sending queries, logging responses and cancelling queries.
The Application contract has also been deployed on Rinkeby (https://rinkeby.etherscan.io/address/0x20e63d9683a75ef73e6174298354f8b016878de3).

The source code of the application contract can be found here [https://github.com/bl4ck5un/Town-Crier/blob/master/contracts/Application.sol]. Now we go through the contract code line by line.

Preliminaries

First, you need to annotate your contract with the version pragma:

pragma solidity ^0.4.9;

Second, you need to include in your contract the function declaration of the TownCrier Contract so that the application contract can call those functions with the address of the TownCrier Contract.

contract TownCrier {
 function request(uint8 requestType,
 address callbackAddr,
 bytes4 callbackFID,
 uint timestamp,
 bytes32[] requestData) public payable returns (uint64);
 function cancel(uint64 requestId) public returns (int);
}

Note

You do not need to include response() here because an appilcation contract should not make a function call to it but wait for being called by it.

Outline of Application.sol

Let’s look at the layout of the Application Contract:

contract Application {
 event Request(int64 requestId, address requester, uint dataLength, bytes32[] data);
 event Response(int64 requestId, address requester, uint64 error, uint data);
 event Cancel(uint64 requestId, address requester, bool success);

 bytes4 constant TC_CALLBACK_FID = bytes4(sha3("response(uint64,uint64,bytes32)"));

 address[2**64] requesters;
 uint[2**64] fee;

 function() public payable;
 function Application(TownCrier tcCont) public;
 function request(uint8 requestType, bytes32[] requestData) public payable;
 function response(uint64 requestId, uint64 error, bytes32 respData) public;
 function cancel(uint64 requestId) public;
}

	The events Request(), Response and Cancel() keeps logs of the requestId assigned to a query, the response from TC and the result of a cancellation respectively for a user to fetch from the blockchain.

	The constant TC_CALLBACK_FID is the first 4 bytes of the hash of the function response() that the TownCrier Contract calls when relaying the response from TC. The name of the callback function can differ but the three parameters should be exactly the same as in this example.

	The address array requesters stores the addresses of the requesters.

	The uint array fee stores the amounts of wei requesters pay for their queries.

As you can see above, the Application Contract consists of a set of five basic functions:

Default Function

function() public payable;

This fallback function must be payable so that TC can provide a refund under certain conditions. The fallback function should not cost more than 2300 gas, otherwise it will run out of gas when TC refunds ether to it. In our contract, it simply does nothing.

function() public payable {}

Constructor

function Application(TownCrier tc) public;

This is the constructor which registers the address of the TC Contract and the owner of this contract during creation so that it can call the request() and cancel() functions in the TC contract.

TownCrier public TC_CONTRACT;
address owner;

function Application(TownCrier tcCont) public {
 TC_CONTRACT = tcCont;
 owner = msg.sender;
}

Submitting Requests

function request(uint8 requestType, bytes32[] requestData) public payable;

A user calls this function to send a request to the Application Contract. This function forwards the query to the request() of the TC Contract by

requestId = TC_CONTRACT.request.value(msg.value)(requestType, TC_CALLBACK_ADD, TC_CALLBACK_FID, timestamp, requestData);

msg.value is the fee the user pays for this request. TC_CALLBACK_ADD is the address of the callback contract. or this for the current contract. TC_CALLBACK_FID is the first 4 bytes of the hash of the callback function signature, as defined above.

uint constant MIN_GAS = 30000 + 20000;
uint constant GAS_PRICE = 5 * 10 ** 10;
uint constant TC_FEE = MIN_GAS * GAS_PRICE;

function request(uint8 requestType, bytes32[] requestData) public payable {
 if (msg.value < TC_FEE) {
 // If the user doesn't pay enough fee for a request,
 // we should discard the request and return the ether.
 if (!msg.sender.send(msg.value)) throw;
 return;
 }

 int requestId = TC_CONTRACT.request.value(msg.value)(requestType, this, TC_CALLBACK_FID, 0, requestData);
 if (requestId == 0) {
 // If the TC Contract returns 0 indicating the request fails
 // we should discard the request and return the ether.
 if (!msg.sender.send(msg.value)) throw;
 return;
 }

 // If the request succeeds,
 // we should record the requester and how much fee he pays.
 requesters[uint64(requestId)] = msg.sender;
 fee[uint64(requestId)] = msg.value;
 Request(int64(requestId), msg.sender, requestData.length, requestData);
}

Warning

Developers need to send enough fee.

TC requires at least 3e4 gas for all the operations (besides calling the callback function). The gas price is set to 5e10 wei. So the caller should pay at least (3e4 + callback_gas) * 5e10 wei. Otherwise the request call will fail (and the TC Contract will return 0 as requestId). Developers should handle this failure.

For our Application.sol, the callback function (response) costs about 2e4 gas, so the caller should pay no less than (3e4 + 2e4) * 5e10 = 2.5e15 wei (denoted as TC_FEE).

Note

TC server sets the gas limit as 3e6 when sending the response to the TC Contract. If a requester paid more gas than that, the excess ether will not be used for the callback function. It will go directly to the SGX wallet. This is a way to offer a tip for the Town Crier service.

Receiving Responses

function response(uint64 requestId, uint64 error, bytes32 respData) public;

This is the function to be called by the TC Contract to deliver the response from TC server. The selector for this function is passed to the request call. See Submitting Requests.

function response(uint64 requestId, uint64 error, bytes32 respData) public {
 // If the response is not sent from the TC Contract,
 // we should discard the response.
 if (msg.sender != address(TC_CONTRACT)) return;

 address requester = requesters[requestId];
 // Set the request state as responded.
 requesters[requestId] = 0;

 if (error < 2) {
 // If either TC responded with no error or the request is invalid by the requester's fault,
 // public the response on the blockchain by event Response().
 Response(int64(requestId), requester, error, uint(respData));
 } else {
 // If error exists by TC's fault,
 // fully refund the requester.
 requester.send(fee[requestId]);
 Response(int64(requestId), msg.sender, error, 0);
 }
}

Warning

Since the gas limit for sending a response back to the TC Contract is set as 3e6 by the Town Crier server, as mentioned above, the callback function should not consume more gas than that. Otherwise the callback function will run out of gas and fail. The TC service does not take responsibility for such failures, and treats queries that fail in this way as successfully responded to.

To estimate how much gas the callback function costs, you can use web3.eth.estimateGas [https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethestimategas].

Cancellation

function cancel(uint64 requestId) public;

This function calls the cancel() function of the TC Contract, to cancel a unprocessed request.

uint constant CANCELLATION_FEE = 25000 * GAS_PRICE;

function cancel(uint64 requestId) public {
 // If the cancellation request is not sent by the requester himself,
 // discard the cancellation request.
 if (requestId == 0 || requesters[requestId] != msg.sender) return;

 bool tcCancel = TC_CONTRACT.cancel(requestId);
 if (tcCancel) {
 // If the cancellation succeeds,
 // set the request state as cancelled and partially refund the requester.
 requesters[requestId] = 0;
 if (!msg.sender.send(fee[requestId] - CANCELLATION_FEE)) throw;
 Cancel(requestId, msg.sender, true);
 }
}

TC charges 2.5e4 * 5e10 = 1.25e15 wei, denoted as CANCELLATION_FEE here, for cancellation.
In this function a user is partially refunded fee - CANCELLATION_FEE. A developer must carefully set a cancelled flag for the request before refunding the requester in order to prevent reentrancy attacks.

Send queries to Application.sol

You can play with the Application.sol deployed on Rinkeby testnet, at 0xdE34AfC49b8A15bEb76A6E942bD687143C1574B6 [https://rinkeby.etherscan.io/address/0xdE34AfC49b8A15bEb76A6E942bD687143C1574B6].

Assuming we’re at the geth console loaded with the following script. You can find a script for this purpose here [https://github.com/bl4ck5un/Town-Crier/blob/master/scripts/rinkeby/launch.js].

function createApp(tc) {
 unlockAccounts();
 var tradeContract = App.new(
 tc, {
 from: tcDevWallet,
 data: "0x" + compiledContract.contracts["Application"].bin,
 gas: gasCnt
 },
 function (e, c) {
 if (!e) {
 if (c.address) {
 console.log('Application created at: ' + c.address)
 }
 } else {
 console.log('Failed to create Application contract: ' + e)
 }
 });
 return tradeContract;
}

function request(contract, type, requestData) {
 unlockAccounts();
 contract.request.sendTransaction(type, requestData, {
 from: tcDevWallet,
 value: 3e15,
 gas: gasCnt
 });
 return "Request sent!";
}

function watch_events(contract) {
 var his = contract.allEvents({fromBlock: 0, toBlock: 'latest'});
 var events;
 his.get(function (error, result) {
 if (!error) {
 console.log(result.length);
 for (var i = 0; i < result.length; ++i) {
 console.log(i + " : " + result[i].event);
 }
 events = result;
 } else {
 console.log("error");
 events = "error";
 }
 });
 return events;
}

Let’s try to trigger Application.sol to query for bitcoin price (from coinmarketcap.com) and Bitcoin Fee.

First, create an instance of Application.sol.

> var App = web3.eth.contract(JSON.parse("[{"constant":false,"inputs":[{"name":"requestType","type":"uint8"},{"name":"requestData","type":"bytes32[]"}],"name":"request","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"name":"requestId","type":"uint64"}],"name":"cancel","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"TC_CONTRACT","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"requestId","type":"uint64"},{"name":"error","type":"uint64"},{"name":"respData","type":"bytes32"}],"name":"response","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"inputs":[{"name":"tcCont","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"payable":true,"stateMutability":"payable","type":"fallback"},{"anonymous":false,"inputs":[{"indexed":false,"name":"requestId","type":"int64"},{"indexed":false,"name":"requester","type":"address"},{"indexed":false,"name":"dataLength","type":"uint256"},{"indexed":false,"name":"data","type":"bytes32[]"}],"name":"Request","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"requestId","type":"int64"},{"indexed":false,"name":"requester","type":"address"},{"indexed":false,"name":"error","type":"uint64"},{"indexed":false,"name":"data","type":"uint256"}],"name":"Response","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"requestId","type":"uint64"},{"indexed":false,"name":"requester","type":"address"},{"indexed":false,"name":"success","type":"bool"}],"name":"Cancel","type":"event"}]"));
> app = App.at("0xdE34AfC49b8A15bEb76A6E942bD687143C1574B6");

Now, send a few requests!

> request(app, 2, []); // get current bitcoin transaction fee
> request(app, 5, ['bitcoin']);"; // get current bitcoin price

To see the responses (and the requests), examine the log:

> watch_events(app);

You’ll see something like this for bitcoin transaction fee query:

9 : Request
{
 "args":{
 "data":[

],
 "dataLength":"0",
 "requestId":"5",
 "requester":"0x8f108aab17e3b90f6855a73349511f5944b7e146"
 },
 "blockNumber":2182246,
 "transactionHash":"0x027f8b992b65b58f1aa2191e6ae55d1c074cdaa475a71823d1c879ddc8cbae79",
}
10 : Response
{
 "args":{
 "data":"100", // fastestFee=100 from https://bitcoinfees.earn.com/api/v1/fees/recommended
 "error":"0",
 "requestId":"5",
 "requester":"0x8f108aab17e3b90f6855a73349511f5944b7e146"
 },
 "blockNumber":2182248,
 "transactionHash":"0x630d8f7fae392c2ff6a0115956e72cad5fae4e008f3ef5e543d02c112a7d5cf5",
}

For bitcoin price query:

11 : Request
{
 "args":{
 "data":[
 // ascii of 'bitcoin', to get the current bitcoin price
 "0x626974636f696e00"
],
 "dataLength":"1",
 "requestId":"6",
 "requester":"0x8f108aab17e3b90f6855a73349511f5944b7e146"
 },
 "blockNumber":2182269,
 "transactionHash":"0x673a1db9c675646c6319959f879bd8a3f711393667e6343c2125e707a70e8616",
}
12 : Response
{
 "args":{
 "data":"9204", // bitcoin price is 9204 USD at Fri Apr 27 00:44:58 EDT 2018
 "error":"0",
 "requestId":"6",
 "requester":"0x8f108aab17e3b90f6855a73349511f5944b7e146"
 },
 "blockNumber":2182271,
 "transactionHash":"0x1464d26cbab1238ce8ac4ac48cd2019425be59c451099d2437056ac6c253bf40",
}

How to use various docker images

The preferred way to launch TC is via docker services.
Of course, you’ll need docker [https://docs.docker.com/get-docker/] and docker-compose [https://docs.docker.com/compose/install/] properly installed.

Setup

First, get the docker service files from

git clone https://github.com/bl4ck5un/Town-Crier-docker-sevices
cd rinkeby

The current version of TC uses Infura as a Web3 provider to access Rinkeby testnet.
(Support for other networks as well as private nets are being added.)
To use Infura, set the following environment variables (or put them in a .env file):

Warning

Keep WEB3_INFURA_PROJECT_ID and WEB3_INFURA_API_SECRET secrets.

Launch TC

Thanks to docker-compose, TC—the backend as well as the relay—can be launch together in one command: docker-compose up.
To run it in the background, use docker-compose up -d.
Other advanced uses of docker-compose can be found in their documentation.

There is a convenience Makefile that wraps around common docker-compose commands.
For example, you can type make up instead of docker-compose up.

Technical details of the TownCrier.sol

The TownCrier contract provides a uniform interface for queries from and replies to an application contract, which we also refer as a “Requester”.
This interface consists of the following three functions.

request(uint8 requestType, address callbackAddr, \
 bytes4 callbackFID, uint256 timestamp, \
 bytes32[] requestData) public payable returns(uint64);

An application contract sends queries to TC by calling function request(), and it needs to send the following parameters.

	requestType: indicates the query type. You can find the query types and respective formats that Town Crier currently supports on the Dev page.

	callbackAddr: the address of the application contract to which the response from Town Crier is forwarded.

	callbackFID: specifies the callback function in the application contract to receive the response from TC.

	timestamp: currently unused parameter. This parameter will be used in a future feature. Currently TC only responds to requests immediately. Eventually TC will support requests with a future query time pre-specified by timestamp. At present, developers can ignore this parameter and just set it to 0.

	requestData: data specifying query parameters. The format depends on the query type.

When the request function is called, a request is logged by event RequestInfo().
The function returns a requestId that is uniquely assigned to this request.
The application contract can use the requestId to check the response or status of a request in its logs.
The Town Crier server watches events and processes a request once logged by RequestInfo().

Requesters must prepay the gas cost incurred by the Town Crier server in relaying a response to the application contract.
msg.value is the amount of wei a requester pays and is recorded as Request.fee.

deliver(uint64 requestId, bytes32 paramsHash, uing64 error, bytes32 respData) public;

After fetching data and generating the response for the request with requestId, TC sends a transaction calling function deliver().
deliver() verifies that the function call is made by SGX and that the hash of query parameters is correct.
Then it calls the callback function of the application contract to transmit the response.

The response includes error and respData.
If error = 0, the application contract request has been successfully processed and the application contract can then safely use respData.
The fee paid by the application contract for the request is consumed by TC.
If error = 1, the application contract request is invalid or cannot be found on the website.
In this case, similarly, the fee is consumed by TC.
If error > 1, then an error has occured in the Town Crier server.
In this case, the fee is fully refunded but the transaction cost for requesting by the application contract won’t be compensated.

cancel(uint64 requestId) public returns(bool);

A requester can cancel a request whose response has not yet been issued by calling function cancel().
requestId is required to specify the query.
The fee paid by the Appliciation Contract is then refunded (minus processing costs, denoted as cancellation fee).

For more details, you can look at the source code of the contract [TownCrier.sol].

Index

Query API documentation

We use ECDH (on SECP256K1) + AES-256 hybrid encryption for users to encrypt their queries.

Our public key is (base64)
BIHqhi/x96ZLLFhDH7/4QPLYn/KTj1i1wRdQ7jcDIPknVs6E+ILJdZpw8yX2j+QhFKnJnnJDOiesCDEK2qVr7Rw=

We built a web-based tool [https://github.com/bl4ck5un/Town-Crier/tree/master/utils/encrypt] to facilitate the encryption.
We refer users to https://github.com/bl4ck5un/hybrid-enc/ for a reference
implementation of the above encryption scheme.

Flight Departure Delay

query content

{"flight": "ABC", "time": 123123123}

example encryption output

Steam Trade

query content

{
 "api_key": "0xdeadbeef",
 "buyer_id": "dummy_id",
 "cutoff_time": "148889898",
 "items": ["item1","item2"]
}

example encryption output

['BK1OC1KkBi1ZlMJKh9NIPVp8sPaYqqbC', 'kRhJdQVuWSZA9yX2xbhzB9HcPrvr/gr/', 'Aids9oUSwQbxdrIJjEfI0SGZAAAAAAAA', 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA', 'ABp5WAPVjfXpNNbZZCWNgLbIJweK0QwW', 'kNeoR7BT3tl5OY6AA11rhPxZ7sJRtKzW', 'f+kY+SCT7jJHAVhVAD+cKDXc2LWX6c4z', 'aUJhPjeA/HHa304HeP8lGQJApVx+g30U', 'rh1O58/2JeeNhjurTgQp8kOESo+VVlrx', 'z/w=']

Flight Insurance Contract

The Application Contract above is only able to send queries to and receive responses from TC.
For many real-life applications there is one critical factor missing: timing.
A stock exchange contract which settles at a specified time needs to know the stock quote for that time.
A trip insurance contract which needs to find out whether a flight departs on time must fetch the flight state after the scheduled departure time.
A contract for the sale of a physical good has to wait for a period for delivery after payment to check whether the good was successfully delivered.
The immediate response TC currently supports cannot directly fulfill such requirements in these applications, but
developers can use other strategies to get around this limitation. (Future versions of TC will allow for pre-specified, future query times using the timestamp parameter.)

Here we present a design for a flight insurance application that illustrates use of the full existing range of TC features.

Application setting

Suppose Alice wants to set up a flight insurance service and creates a smart contract FlightInsurance for this purpose.
A user can buy a policy for his flight from Alice by sending money to the FlightInsurance Contract.
FlightInsurance offers a payout to the user should his insured flight be delayed or cancelled.
(Unfortunately, TC cannot detect whether you’ve been senselessly beaten and dragged off your flight by United Airlines.)

Problem with the Application Contract

The FlightInsurance Contract contains the same five basic components found above in the Application Contract.
However, we don’t want to query TC immediately after a user, say Bob, purchases a policy. If we do so, this will result in one of two bad cases.
One is that Bob purchases a policy for a flight that has already been delayed or cancelled, which is unfair to Alice.
The other is that Bob purchases a policy before the scheduled departure time of his flight so when the FlightInsurance Contract queries immediately, it will get response of “not delayed” since the flight hasn’t yet left. This is unfair to Bob.

A scheme to get around the problem

To address this problem, we can separate the two operations and deal with them at different times.
The FlightInsurance Contract needs to include a Insure() function for a user to buy a policy for his flight a certain period ahead of the scheduled departure time, say 24 hours.
The contract can simply compare block.timestamp with the flight data to guarantee this restriction.
If the request is valid, then the contract will store the flight data and issue a policy ID to the user for querying TC later.
When the flight departs, the user can send a transaction to Request() with the policy ID in the FlightInsurance Contract, and the contract will query TC.
Then everything works much as in the Application Contract.

You can take a look at the FlightInsurance.sol for the complete FlightInsurance Contract logic.

How to set up a local Town Crier instance

There are three components

	An C++ SGX backend (i.e., the enclave)

	A Python relay

	A smart contract frontend (i.e., the TC contract)

There are three simple steps to set up a Town Crier node and hook it up with an example relying contract:

	Set up the Town Crier smart contract, and the relying smart contract

	Launch Town Crier

	Send a bunch of requests to Town Crier and see it working!

We’ll go through the process step by step.

Set up the smart contracts

In this step, we first create a local blockchain for testing, then deploy the Town Crier smart contract and an
application smart contract on it.

For this purpose you usually want to create a private net [https://geth.ethereum.org/docs/interface/peer-to-peer] by setting networkid to an integer other than
1 to 4, and (optionally) disabling peer-to-peer discovery and other unnecessary features.

We provided a set of scripts to make the process easier. Feel free to follow alone or tweak it to your needs.

	Create or clone a blockchain using geth.

start in the root directory
cd scripts/privatenet
make console # this does step 1 - 3

	Deploy the TC contract.

IN THE GETH CONSOLE
> tc = create_tc();
this could take a while for the first time (2 minutes on my laptop).
Wait until "Generating DAG in progress" ends.
When finished, you'll see a message saying
Town Crier created at: 0x18322346bfb90378ceaf16c72cee4496723636b9 (the address may be different)

	Create an Application contract to test Town Crier.

in the same geth console
> app = createApp(tc.address);

set up logging for both contracts
> setup_log(tc);
> watch_events(tc);
> watch_events(app);

Launch Town Crier

Keep the geth console open, now open a new terminal to launch Town Crier.
This is as simple as:

cd dockerfiles/services
make up-debug

Send a bunch of queries

Now go back to the geth console.

> request(app, 5, ['bitcoin']);

 _static/ajax-loader.gif

_images/1.png
Blockchain TC Server
TC Contract Relay
Crc R

|

User Contract

Cu

Enclave
(prOgencl)

Data Source

HTTPS

_images/2.png
Blockchain TC Server

mo =

(id, params)
TC Contract Enclave
CTC ms = (prOgencl)
(id, params,
data) .
(";rla:s ma = (obtains data
capllback)’ (data) from data source)

L3

User Contract

Cu

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Town Crier’s documentation!

 		
 How Town Crier Works

 		
 The Big Picture

 		
 A Little Bit More Details

 		
 Security of TC

 		
 Get Started: Write Your First TC-powered Contract

 		
 Submit queries via request

 		
 Canceling requests via cancel

 		
 Receiving responses from TC

 		
 Play with TC on Rinkeby

 		
 Preliminaries

 		
 Outline of Application.sol

 		
 Default Function

 		
 Constructor

 		
 Submitting Requests

 		
 Receiving Responses

 		
 Cancellation

 		
 Send queries to Application.sol

 		
 How to use various docker images

 		
 Setup

 		
 Launch TC

 		
 Technical details of the TownCrier.sol

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

